USER MANUAL					
CERN	Class: VME		Fu	Function: Optical to RF (DIGITAL)	
PH/ESS document No:	Created :	11.10.2006	Pa	-	1 of 17
PH-ESS-02-01	Modified:	date	Rev	v.No.	1
RF to Digital Optical VMEbus Interface Card and S/W					
Summary: This document describes the functionality of the RF_Tx_Digital card as well as the generic S/W that has been developed for it.					
	<u> </u>	Checked by	:		Approved by :
Markus Joos, PH/ES	S				
Prepared by : Markus Joos, PH/ESS for information, you can contact :	S Markus Joos	Checked by Tel. +41.22.7672364	: Fa +41.22.7		Approved by : E-Mails markus.joos@cern.ch
Markus Joos, PH/ES		Tel.	Fa	671025	E-Mails

H/ESS Document. No.		
PH – ESS – ## – ##		

Table of Contents

Ρ

1. Int	roduction	3
2. RF	TX_D Hardware	4
2.1.	Power description	4
2.2.	Optical Interface	5
2.3 2.3 2.3 2.3	Software: Vme addres map	8 9 9 9 9 .10 .11 .12
2.4.	Calibration procedures	
2.5.	Board configuration Jumpers and switch	15
2.6.	Fibre / cable connections	15
2.7.	Front-panel LEDs	16
2.8.	References or more information	16
3. TT	C common software	17
3.3. 3.3.1. 3.3.2.		.17
3.4.	Test programs	17
3.5.	The user library	17

PH/ESS Document. No.	Page	3 of 17
PH – ESS – ## – ##	Rev. No.	1

1. INTRODUCTION

The RF_TX_D (RF to digital Optical VMEbus car) is an interface card developed as triple optical transmitter.

The two boards used together provide 3 digital optical channels, with an 1bit analog to digital converter (comparator), and output LVPECL ac coupled*.

This document contains a hardware description of the board and all accessible registers of the RF_TX_D card as well as description of the generic S/W that has been developed for this card. At the end of this document, some basic examples of configuration procedures are proposed.

PH/ESS Document. No.	Page	4 of 17
PH – ESS – ## – ##	Rev. No.	1

2. RF_TX_D HARDWARE

2.1. POWER DESCRIPTION

This board requires a VME crate with the standard VME64 power supply, with 12, -12, and 5 Volts available. The nominal consumption for these lines is:

Voltage	Current (A)	Fuse Current
5V	650mA	1.5A
+12V	30mA	0.1A
-12V	30mA	0.1A

Table 2.1: Power consumption

In order to check the power supplied to the board, three LEDs have been installed to indicate the presence of +12V, -12V and $+3.3V^*$ (generated from +5 V, indicating with this light both voltages).

*If this LED is not lighting, proceed checking the +5V fuse state.

PH/ESS Document. No.	Page	5 of 17
PH – ESS – ## – ##	Rev. No.	1

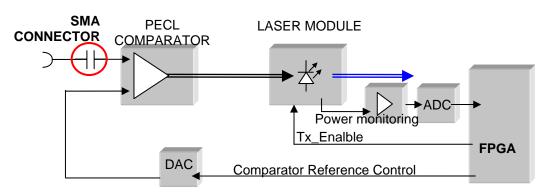
2.2. OPTICAL INTERFACE

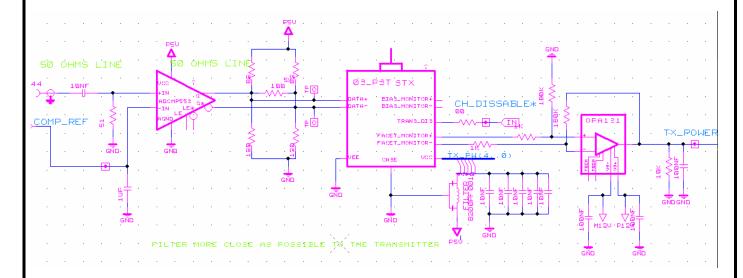
The Optical interface is composed of three equal blocks based on two laser modules that use the same footprint and connection diagram. Each laser module is recommended to transmit a specific frequency range.

LASER MODULE	Recommended Frequencies	Notes
OCP STX 03	From 0 to 100 MHz	Up to 500 MHz (>250Mhz: out of specs)
OCP STX 24	From 0 to 400 MHz	Up to 600 MHz Expensive Photodiode, recommended only to ensure 400MHz Transmissions

Table 2.2: Signal supported for each Laser module

Each channel admits analog or digital input through a coaxial SMA connector and offers an Optical output through a ST/PC connector.


Immediately after the coaxial connector, there is a capacitor that blocks the DC component of the signal. This capacitor can be removed in order to make a full DC coupled channel.


Picture 2.2.a: Location of Input Capacitor

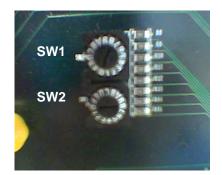
PH/ESS Document. No.	Page	6 of 17
PH – ESS – ## – ##	Rev. No.	1

In order to control and monitor the Tx module, an AD and DA converters have been installed in the purpose of controlling the Reference value of the comparator and monitoring the power of the Laser during the transmission.

Picture 2.2.b: Optical Interface Diagram

Picture 2.2.c: Optical Interface schematic

PH/ESS Document. No.	Page	7 of 17
PH – ESS – ## – ##	Rev. No.	1


2.3. VMEBUS INTERFACE

The VMEbus interface of the RF_TX_D cards is implemented in its FPGA and based on a VHDL Module developed by the AB/RF group. This Module has been developed especially for VME64 but adapted for using some functionality of VME64X (like automatic addressing).

The firmware installed has been configured to work in the addressing mode of: A24/D16 and works as a memory decoder, where all the memory space is available.

The access modes (dictated by address modifier) are only available for 0x39 and 0x3D, where the there is no distinction between privilege user and normal user

From this 24bits of memory address, 6 bits are used for the module address [A23 to A18]. This address can be set up using the two rotary switches.

Picture 2.3: Module address selector

In addition, it is possible to fix automatically the module address by using the geographical address of VME64x.

In order to select the source of the module address (rotary switches or GEO addr.), from the 8 bits of the R.S. the 2 lower bits are designated to select it.

PH/ESS Document. No.	Page	8 of 17
PH – ESS – ## – ##	Rev. No.	1

2.3.1. ADDR MODULE SELLECTION

Address space available:

Note: M represent XXXX (any combination of 4 bits) N represent XX (any combination of 2 bits)

0xM(N+0)0000 to 0xM(N+3) FFFF → 256 Kbytes of memory

Rotary Switch 1	Rotary Switch 2	Module address (MA)
М	Bits(3:2)= N	Automatic GEO Address (5bits + 0)*
	Bits(1:0)= "1 to	[A23A19] <= GEOGA(4 : 0)
	3"	A18 <= 0
М	Bits(3:2)= N	0xMN Manual Address
	Bits(1:0)= "0"	[A23A20] <= M
		[A19A18] <= N

*Requires VME64X crate

Table 2.3.1: Address and ADDR Mode selection

In others words, the bottom rotary switch (sw1) controls the addressing mode with the lower two bits, which switches to automatic mode if the b(0) or b(1) = 1.

Examples:

Rotary Switch 1	Rotary Switch 2	Module MODO / ADDRESS / SPACE	
0xF	0	Manual address	
		Module address: 0xF0 0000	
		Board space: 0xF00000 to 0xF3 FFFF	
0xF	1	Automatic address	
		Module address: Depends on the slot into which the card is plugged	
0xF	4	Manual address	
		Module address: 0xF4 0000	
		Board space: 0xF40000 to 0xF7 FFFF	
Table2.3.1.b: Examples of Module Addr			

PH/ESS Document. No.	Page	9 of 17
PH – ESS – ## – ##	Rev. No.	1

2.3.2. SOFTWARE: VME ADDRES MAP

Offset	Size (bytes)	Function	Mode	Remarks
0x0000	2	EDA ID	Read	0x1380
0x0002	2	REF_POWER_COMPARATO R	Read/Write	
0x000A	2	CH1_POWER	Read	
0x000C	2	CH2_POWER	Read	
0x000E	2	CH3_POWER	Read	Default for pulse transmission
0x0010	2	CH1_REF (COMPARATOR)	Read / Write	
0x0012	2	CH2_REF (COMPARATOR)	Read / Write	
0x0014	2	CH3_REF (COMPARATOR)	Read / Write	Default for pulse transmission
0x0020	2	TX_ENABLE	Read/Write	Enable Transmitters (bits 1 to 3)
0x003A	2	BOARD ID (CERN ID)	Read	0x016D
Others		Unused		

Table 2.3.2: VME Memory Map

2.3.3. REGISTERS DESCRIPTION

2.3.3.1. EDA IDENTIFICATION

Name	Offset	Size	Access
EDA ID	0x0000	16 bits	R

The card ID is just a register that can be used to identify the board. This default value is 0x1380, which correspond to the EDA project number of the board

2.3.3.2. REFERENCE POWER THRESHOLD

Name	Offset	Size	Access
REF_POWER_COMPARATOR	0x0004	16 bits (8bits used)	R/W

The reference Power threshold is a register used as reference to be compared to the power that the laser is transmitting. The result of the comparison is indicated in the front panel with a LED (Green light indicates power emitted > Power threshold, Red light indicates the opposite).

PH/ESS Document. No.	Page	10 of 17
PH – ESS – ## – ##	Rev. No.	1

2.3.3.3. POWER MONITORING REGISTERS

Name	Offset	Size	Access
CH1_POWER	0x000A	16 bits (8bits used)	R
CH2_POWER	0x000C	16 bits (8bits used)	R
CH3_POWER	0x000E	16 bits (8bits used)	R

The data contained in this registers are obtained by the digitalisation of the signal generated by the power monitoring output (see reference notes of OCP-STX).

The purpose of these registers is to evaluate the evolution of the lasers' power emissions. At the same time, their values indicates if the lasers are transmitting of not.

The expected value may change from one photodiode to other, especially if the photodiodes are for different bandwidth. (From OCP STX 03 to stx24 can vary up to 100%)

The main idea of monitoring the lasers' power registers is know the state of the lasers (if they are activated or not) and if they activated, make estimation about the laser state, knowing that the power function is LINEAR and:

Laser Module	Register	State
OCP STX 03 & 24	0x0000	Disable or broken
OCP STX 03	0x0070	~0dbm
OCP STX 24	0x00E0	~0dbm

Table 2.3.3.3: Normal Lasers' power registers values

Instructions for setting up the Threshold value:

- If the laser is new
 - Read the registers the first time when a new laser module is connected (time 0):
 - if the laser is not defective, then, set up the power threshold register around 10% less of the value measured

- If is not new

- Measure the Optical power emitted with a power optical metre
- Measure the register and generate a linear approximation to the original values
- if the laser is not defective, then, set up the power threshold register around 10% less of the value measured

PH/ESS Document. No.	Page	11 of 17
PH – ESS – ## – ##	Rev. No.	1

2.3.3.4. VREF REGISTERS

Name	Offset	Size	Access
CH1_REF	0x0010	16 bits (8bits used)	R/W
CH2_REF	0x0012	16 bits (8bits used)	R/W
CH3_REF	0x0014	16 bits (8bits used)	R/W

CHX_REF are a group of register that controls the 1bit ADC situate in the RF input.

These registers are 8Bits long and are controlling a linear DAC that will provide a value between 0 and 1.2Volts.

This register generates a reference value which is compared to the input signal. As result of this comparison, a PECL square signal will be generated and sent by the laser module,

$$Vref(mV) = Vref _value \bullet 4.7mv$$

Where:

Vref_value: is the value of the register in decimal

Examples:

Hex Value	Vref	Recommended
0x00	5mv	For any signal centred in zero, (example 10 to 400Mhz sinusoidal or square signal)
0x70	531mV	Recommended for Pulse transmission (1V peak)
0xFF	1.2V	Recommended to Block input signal and transmit a permanent 0
0x25	190mv	Recommended for Pulse transmission (0.5V peak)

Table 2.3.3.4: Example of Vref values and recommendations

PH/ESS Document. No.	Page	12 of 17
PH – ESS – ## – ##	Rev. No.	1

2.3.3.5. TX_ENABLE REGISTERS

Name	Offset	Size	Access	Default
TX_ENABLE	0x0020	8 bits (bits 3 to 1)	R/W	0x0E

By default, the lasers are enabled in order to offer a transmission as soon as the board is plugged.

It is nevertheless possible to disable the laser transmission when is nor required.

Function	Bit	Function
TX1_ENABLE	1	*1 Enable / 0 disable
TX2_ENABLE	2	*1 Enable / 0 disable
TX3_ENABLE	3	*1 Enable / 0 disable
TX1_ENABLE	others	*0 (not writeable, always 0)

* Default values

Hex Value	Tx1 En.	Tx2 En.	Tx3 En.	
0x00				
0x02	Х			X: enable
0x04		Х		Nothing: disa
0x06	Х	Х		
0x08			X	
0x0A	Х		X	
0x0C		Х	Х	
0x0E	Х	Х	X	

Table 2.3.3.5: Tx_Enalble combinatios

Examples:

PH/ESS Document. No.	Page	13 of 17
PH – ESS – ## – ##	Rev. No.	1

2.3.3.6. BOARD IDENTIFICATION

Name	Offset	Size	Access
BOARD ID	0x003A	16 bits	R

The card ID is just a register that can be used for identify the board... this register is situated in offset 0X003A. Its normal value is 365(decimal), the ESS board number.

2.4. CALIBRATION PROCEDURES

The calibration procedure must be done knowing the signals or using a RF_RX_D board (both boards with VME access)

Procedure:

- Reset the board or enable the TX writing (0x000E -> all enabled) in Tx_enable Reg
- Write 0x10 in all the VREF registers
- Do a calibration procedure in the RX_D vme board (see RF_RX_ D user manual)
- Identify the signals used or no signal presence... and the receiver used
- If the receiver board is full OCP, the signal detection circuit will indicate which channel is working
- For knowing the connection diagram between TX_D and RX_D, enable and disable the Lasers and check the frequency variations in RX_D (remember wait 54 seconds between Disable procedure).
- After having identified the signal types, adjust the Vref in the Tx boards as is indicated in the following table:

Frequency / signals	Hex Value	Vref
clocks or signal centred in 0**	0x00 ^{*1}	~0mv
Pulses	0x70 ^{*2}	~531mV

Table 2.4: Calibration Values

- *1: default in channels 1 and 2 after plug on the board
- *2: default in channel 3 after plug on the board
- ** Remember that exist a capacitor in the output that removes the DC component.

PH/ESS Document. No.	Page	15 of 17
PH – ESS – ## – ##	Rev. No.	1

2.5. BOARD CONFIGURATION JUMPERS AND SWITCH

Element	Description
LSB rotary switch	See Table x
MSB rotary switch	See Table x
Reset(Front Panel) push button	Generate a Soft reset in the FPGA when is pressed
ST4	Always ON
ST5	Always OFF
TP25	Frequency selector0 for the JTAG
TP26	Frequency selector1 for the JTAG
ST3	If ST3 is ON -> the FPGA will be reprogrammed when the VME crate reset will be activated (Sysreset)

Table 2.5: Jumpers and Switch descriptions

2.6. FIBRE / CABLE CONNECTIONS

Connector name	To be connected to	Format
CH1 out Optical Link	RF Digital RX	Optical: Digital
CH1 RF In	50omhs Generator	Analog or Digital
CH2 Out Optical Link	RF Digital RX	Optical: Digital
CH2 RF In	50omhs Generator	Analog or Digital
CH3 Out Optical Link	RF Digital RX	Optical: Digital (to ch3 Pulse default)
CH3 RF In	50omhs Generator	Analog or Digital (pulse Default in)
J5	JTAG	JTAG MODE (FPGA)
J6	JTAG	BIT BLASTER MODE (EEPROM)
L	Table 2.6: Connectore a	u d Deservicións e

 Table 2.6: Connectors and Descriptions

PH/ESS Document. No.	Page	16 of 17
PH – ESS – ## – ##	Rev. No.	1

2.7. FRONT-PANEL LEDS

LED	Description
VME COMM	Indicates if the last VME cycle was successful or wrong
ERROR LED	Indicates an error in ?????
CH1 LED (SD CH1)	Indicates Power transmitted > Threshold
CH2 LED (SD CH2)	Indicates Power transmitted > Threshold
CH3 LED (SD CH3)	Indicates Power transmitted > Threshold
	Table 2.7: Front Panel LEDS

2.8. REFERENCES OR MORE INFORMATION

Lasers and Photodiodes evaluation (by Angel Monera) EDA documents (<u>https://edms.cern.ch/nav/eda-01380</u>) RF_TX_D TCL console Manual RF_RX_D User Manual

PH/ESS Document. No.	Page	17 of 17
PH – ESS – ## – ##	Rev. No.	1

- 3. TTC COMMON SOFTWARE
 - 3.3. INTRODUCTION
 - 3.3.1. H/W ENVIRONMENT
 - 3.3.2. S/W ENVIRONMENT

3.4. TEST PROGRAMS

•

.

3.5. THE USER LIBRARY